DM 'Partiel': Stone-Čech compactification

Let X be a Tychonoff space, this means it satisfies the separation axioms (T_1) and

 $\begin{array}{ll} & \text{for each } x \in X \text{ and a closed set } F \subset X \text{ s.t. } x \not\in F \\ (T_{3\frac{1}{2}}): & \text{there exists a continuous function } f: X \to [0,1] \\ & \text{such that } x \in f^{-1}(\{0\}) \text{ and } F \subset f^{-1}(\{1\}). \end{array}$

0. Recaps, basics.

(i) Quote (T₁), (T₂), (T₄), and Urysohn's lemma; argue that normal Hausdorff spaces (i.e., topological spaces satisfying (T₁) and (T₄)) are Tychonoff spaces.
(ii) Prove that compact Hausdorff spaces (='compacts en français' = compact topological spaces satisfying (T₂)) are normal Hausdorff (i.e., satisfy (T₄)).

Definition. A Stone-Čech compactification of a topological space X is a compact Hausdorff space βX and a continuous mapping $\iota = \iota_X : X \to \beta X$ such that the following universal property holds:

for each continuous mapping $f: X \to K$ of the space X to a compact Hausdorff space K there exists a unique continuous mapping $\beta f: \beta X \to K$ such that $\beta f \circ \iota_X = f$.

(iii) Prove that the space βX , if exists, is unique up to a homeomorphism.

(iv) Provided X is a Tychonoff space, prove that $\iota : X \to \iota(X)$ has to be a bijection and, moreover, a *homeomorphism* (the topology on $\iota(X)$ is induced from βX). [*Hint:* For the latter, prove that $\iota(F)$ is closed in $\iota(X)$ if F is closed in X.]

Informally speaking, we aim to homeomorphically embed a Tychonoff space X into a (huge) compact Hausdorff space such that all continuous functions $f: X \to K$ admit(!) a unique(!) continuation onto this bigger space.

Our first goal is to prove that, for Tychonoff spaces X, the Stone–Çech continuation βX exists by giving an explicit construction based upon Tychonoff's theorem.

1. Construction. Denote $C_X := C(X; [0, 1])$, the space of all continuous functions from X to [0, 1], and consider a *Tychonoff cube*

$$K(C_X) := [0,1]^{C_X} = \prod_{x \in X} [0,1] = \{ \Phi : C_X \ni g \mapsto \Phi(g) \in [0,1] \}$$

(where one does *not* assume any property of Φ), equipped with the usual product topology. Recall that $K(C_X)$ is a compact space due to the Tychonoff theorem.

Now consider the mapping $I : X \to K(C_X)$, $x \mapsto I(x)$, where the evaluation functional $I(x) \in K(C_X)$ is defined as follows: [I(x)](g) := g(x).

(i) Prove that $I: X \to I(X)$ is a bijection. Recall the definition of the topology on $I(X) \subset K(C_X)$ and use it to define a 'new' topology on $X = I^{-1}(I(X))$.

(ii) Using the fact that X is a Tychonoff space, prove that this 'new' topology is the same as the original one and thus $I: X \to I(X) \subset K(C_X)$ is a homeomorphism.

Let us define $\beta X := \overline{I(X)}^{K(C_X)}$, the closure of I(X) in the topology of $K(C_X)$.

(iii) Argue that thus defined βX is a compact Hausdorff space.

2. Universal property. Assume now that $f : X \to K$ is a continuous function, where K is a compact Hausdorff space. We aim to prove that there exists a unique continuous function $\beta f : \beta X \to K$ s.t. $f = \beta f \circ I$, where βX is constructed above. (i) Argue that such a function $\beta f : \beta X \to K$, if exists, is unique.

(ii) Consider first the case K = [0, 1]. Given a continuous function $f : X \to [0, 1]$, prove that the function $\beta f : K(C_X) \to [0, 1]$, $\Phi \mapsto \Phi(f)$, is continuous and that its restriction onto $\beta X \subset K(C_X)$ satisfies the required property $f = \beta f \circ I$.

(iii) Now consider the case when $K = K(A) = [0, 1]^A$ is also a Tychonoff cube (we do <u>not</u> make any assumption on A here). Again, prove that each continuous function $f: X \to K(A), x \mapsto f(x) : A \to [0, 1]$, admits a *continuous(!)* extension $\beta f: K(C_X) \to K(A)$ defined as follows: $[(\beta f)(\Phi)](\alpha) = \Phi(f(\cdot)(\alpha))$.

(iv) Finally, argue that each compact Hausdorff space K can be homeomorphically embedded into a Tychonoff cube K(A) with $A = C_K$ and conclude the proof.

3^{**} **Bonus: ultrafilters on** \mathbb{N} . It is easy to see that $\beta X \cong X$ if X is a finite set. Let us consider the simplest nontrivial example: $X = \mathbb{N}$ (equipped with the discrete topology). Recall that $\mathcal{U} \subset 2^{\mathbb{N}} \setminus \{\emptyset\}$ is called a (proper) *ultra-filter* if

- for each $Y \subset \mathbb{N}$ either $Y \in \mathcal{U}$ or $\mathbb{N} \setminus Y \in \mathcal{U}$ (but not both);
- \circ if $Y \in \mathcal{U}$, then $Y' \in \mathcal{U}$ for all larger sets $Y \subset Y' \subset \mathbb{N}$;
- \circ if $Y_1, Y_2 \in \mathcal{U}$, then $Y_1 \cap Y_2 \in \mathcal{U}$.

Prove that the Stone–Čech compactification $\beta \mathbb{N}$ of \mathbb{N} is homeomorphic to the set of all proper ultra-filters on \mathbb{N} equipped with the *Stone topology*, i.e., the topology generated by the base sets $\mathcal{W}_Y := \{\mathcal{U} : Y \in \mathcal{U}\}$, where Y runs over all subsets of \mathbb{N} . The inclusion $\iota : \mathbb{N} \hookrightarrow \beta \mathbb{N}$ is defined as $n \mapsto \mathcal{U}_n := \{Y \subset \mathbb{N} : n \in Y\}$.

(i) Check that the Stone topology is correctly defined (i.e., that one can use the family $\{W_Y\}_{Y \subset \mathbb{N}}$ as a base set to define a topology) and that it is Hausdorff.

(ii) Prove that thus defined topological space is compact. [*Hint:* This is equivalent to the following statement: given a family of sets Y_{α} such that no finite sub-family covers \mathbb{N} , one can define an ultrafilter on \mathbb{N} that does not contain any of Y_{α} .]

(iii) Study the notion of *ultra-limits* and prove that, given an arbitrary function $f : \mathbb{N} \to K$, one can set $(\beta f)(\mathcal{U}) := \mathcal{U}$ -lim f(n) and that $\beta f : \beta \mathbb{N} \to K$ is continuous (where $\beta \mathbb{N}$ is now defined as the topological space of all proper ultra-filters on \mathbb{N}).